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Graphs are widely used to model complicated data semantics in many application domains. In this paper,

two novel and efficient algorithms Fast-ON and Fast-P are proposed for solving the subgraph isomorphism

problem. The two algorithms are based on Ullman algorithm [Ullmann 1976], apply vertex-at-a-time match-

ing manner and path-at-a-time matching manner respectively, and use effective heuristics to cut the search

space. Comparing to the well-known algorithms, Fast-ON and Fast-P achieve up to 1-4 orders of magnitude

speed-up for both dense and sparse graph data.

Additional Key Words and Phrases: Subgraph isomorphism, vertex-at-a-time matching, path-at-a-time

matching

1. INTRODUCTION

As a popular data structure, graphs have been used to model many complex data
objects and their relationships in the real world, such as the chemical compounds
[Willett 1998], entities in images [Petrakis and Faloutsos 1997], and social networks
[Cai et al. 2005]. For example, in social network, a person i corresponds to a vertex
vi in the graph G, and another person j corresponds to a vertex vj in the graph
G. If persons i and j are acquaintances or they have a business relation, then an
edge (vi, vj) exists, which connects vertex vi and vj . Also in chemistry, a set of atoms
combined with designated bonds are used to describe chemical molecules.

Subgraph isomorphism is an important and very general form of pattern matching
that finds practical applications in areas such as pattern recognition and computer
vision, computer-aided design, image processing, graph grammars, graph transfor-
mation, bio computing, search operation in chemical structural formulae database,
and numerous others. Moreover, subgraph isomorphism checking is the basic and
important operation in managing and analyzing graph data. In other words, it is the
building block of many graph analysis and management activities. For example, in
Frequent Subgraph Mining – a well-addressed problem in graph data analysis – the
objective is to extract all subgraphs in a given set of data graphs, that occur in at
least a specified number of data graphs. The core in solving this problem is subgraph
isomorphism checking. The reason is given as follows. One main challenge in frequent
subgraph mining is to count how many data graphs containing each given candidate
subgraph. This involves subgraph isomorphism checking between the candidates and
each data graph. Another example is the well-known Subgraph Search, an important
problem in graph data management. The objective of subgraph search is to retrieve
data graphs that contain a query graph as a subgraph. Subgraph isomorphism
checking plays an important role in any solution to this problem.

Informally, two graphs H and G are isomorphic if it is possible to redraw one of
them, say G, so it appears to be identical to H . In other words, it asks whether there
is a one-to-one mapping between the vertices of the two graphs, preserving vertex
connections (the edges). On the other hand, the subgraph isomorphism problem
asks the following question. Given two graphs H and G, is H isomorphic to any
subgraph of G? Graph isomorphism is neither known to be solvable in polynomial
time nor NP-complete, while subgraph isomorphism is known to be NP-complete

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

http://arxiv.org/abs/1904.08819v1


A:2 Hassaan, M. and Gouda, K.

[Garey and Johnson 1990].

Contribution. In this paper, we propose two new algorithms for subgraph isomor-
phism checking. These algorithms are based on Ullman algorithm and improve upon
it by reducing its search space. The first algorithm reduces the search space size by
utilizing the label information of vertex’s neighborhood, and speeding up the search
by following a novel ordering strategy of the query’s vertices. The algorithm is called
Fast-ON. Comparing to the well-known algorithms Ullman [Ullmann 1976] and Vflib
[Cordella et al. 2004], Fast-ON achieves up to 1-3 orders of magnitude speed-up.

The second algorithm explores the possibility of leveraging substructural matching
instead of vertex matching. In fact, substructure matching will cut down the depth
of the search tree, and reduce the search size as the matching candidates will also
be minimized accordingly. This new algorithm follows a path-at-a-time matching
manner, and called Fast-P. To speed up the search in Fast-P, we propose an ordering
of the query paths to force false mappings to be discarded as early as possible during
the search. Comparing to the well-known algorithms Ullman [Ullmann 1976] and
Vflib [Cordella et al. 2004], Fast-P achieves up to 1-4 orders of magnitude speed-up.

Organization. This paper is organized as follows. Section 2 defines the preliminary
and concepts. Section 3 presents the related work. Section 4 presents our two new
algorithms (Fast-ON and Fast-P). Section 5 reports the experimental results. Finally,
Section 6 concludes the paper.

2. PRELIMINARIES

In this section, we introduce the fundamental concepts. Let Σ be a set of discrete-
valued labels. A labeled graph is a 3-tuple, G = (VG, EG, lG) where VG is a set of ver-
tices. Each v ∈ VG is a unique ID representing a vertex, EG ⊆ VG × VG is a set of edges
(directed or undirected), and lG : VG ∪ EG 7−→ Σ is a function assigning labels to the
vertices and edges of the graph. A labeled graph G is said to be connected, if each pair
of vertices vi, vj ∈ VG, i 6= j, are directly or indirectly connected. This paper focuses on
undirected, simple (no self-loops, no duplicate edges), labeled, and connected graphs.
Given a graph G, we define the set of adjacent vertices (or neighbors) of a vertex v ∈ G
as adjG(v) = {u : (v, u) ∈ EG}, and the degree of v as degG(v) = |adjG(v)|. The size of
G is denoted by |G| = |EG|. In what follows, a labeled graph is simply called a graph
unless stated otherwise.

Definition 2.1. Labeled Paths. A path p = u u′ from a vertex u to a vertex u′ in
a labeled graph G is a sequence v0, v1, . . . , vk of vertices such that u = v0 and u′ = vk,
and (vi−1, vi) ∈ EG ∀i = 1 . . . k. In other words, it is a sequence of edges connecting two
vertices u ∈ VG, u′ ∈ VG. If the vertex label is used instead of its id, for each vertex in
the path, the path is called labeled path. �

A path without repetitive vertices is often referred to as a simple path. A cycle is a
special path with at least three edges, in which the first and last vertices are identical,
but otherwise all vertices are distinct.

Definition 2.2. Graph Isomorphism. Given two graphs H = (VH , EH , lH) and G =
(VG, EG, lG). A graph isomorphism from H to G is a bijection f : VH 7−→ VG such that:

(1) (u, v) ∈ EH iff (f(u), f(v)) ∈ EG,
(2) lH(u) = lG(f(u)) ∀u ∈ VH , and
(3) lH((u, v)) = lG((f(u), f(v))). �
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In other words, the isomorphism f preserves the edge adjacencies, as well as the
vertex and edge labels. If the function f is only injective but not bijective, we say that
H is isomorphic to a subgraph of G, or subgraph isomorphic to G, denoted H ⊆ G. In
this case we also say that G contains H .

A graph automorphism is an isomorphism from the graph to itself. Given a graph G,
the group of all its isomorphic graphs are called an automorphism group. The graph G
may also contain many occurrences (embeddings) of the subgraph H . Two embeddings
are considered redundant if their corresponding subgraphs are automorphic.

Fig. 1. Graph Isomorphism

Fig. 2. Subgraph Isomorphism

u1 u2 u3 u4

f1 v1 v2 v4 v3
f2 v2 v1 v3 v4

(a)

u1 u2 u3

f1 v1 v3 v4
f2 v1 v4 v3
f3 v2 v4 v5
f4 v2 v5 v4

(b)

Fig. 3. The Set of all Possible Graph (a) and Subgraph Isomorphism (b)

EXAMPLE 1. In Figure 1, G1 and G2 are isomorphic graphs. An example of an iso-
morphism is f(v1) = u1, f(v2) = u2, f(v3) = u3, and f(v4) = u4. In Figure 2, q is
subgraph isomorphic to G. An example of an subgraph isomorphism is f(u1) = v1,
f(u2) = v3 and f(u3) = v4. There are several possible graph or subgraph isomorphisms
between two graphs. The set of all possible graph isomorphisms from G1 to G2 are
shown in Figure 3(a). Also, the set of all possible subgraph isomorphisms from q to G
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are shown in Figure 3(b). The subgraphs identified by the two mappings f1 and f2 are
redundant. So f3 and f4. �

3. RELATED WORK

A straightforward approach to check subgraph isomorphism between the graph query
q against a data graph G is to explore a tree-structured search space considering all
possible vertex-to-vertex correspondences from q to G. The search space traversal is
halted until the structure of q implied by the vertex mapping does not correspond
in G, while reaching a leaf node of the search space means successfully mapping all
vertices of q upon G without violating the structure and label constraints of subgraph
isomorphism, and it is, therefore, equivalent to having found a matching of q in G.

The tree in Fig. 4 shows a part of the search space generated from testing the
two graphs q and G in Fig. 2 for subgraph isomorphism. This space enumerates all
possible mappings between the vertices of the two graphs. At level i of the tree, a
vertex ui in Vq is mapped to some vertex in VG (the number j inside each node in the
search tree means that this node represents the vertex vj ∈ VG). The root node of
the search tree represents the starting point of the search, inner nodes of the search
tree correspond to partial mappings, and nodes at level |Vq| represent complete –
not necessarily sub-isomorphic – mappings. If there exists a complete mapping that
preserves adjacency in both q and G, then we have q is subgraph isomorphic to G,
otherwise q is not subgraph isomorphic to G. The bold path in the tree, (u1 is mapped
to v1, u2 is mapped to v3, and u3 is mapped to v4), is a complete mapping that preserves
adjacency in q and G, thus q is subgraphs isomorphic to G.

Fig. 4. A Part of Search Tree

Definition 3.1. Matching Candidate Set. Given a vertex u ∈ Vq, the matching
candidate of u is a set Cand(u) of vertices in G sharing the same vertex label with u,
i.e., Cand(u) = {v ∈ VG : lq(u) = lG(v)}. �
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Thus, in the naive approach, for each vertex u ∈ Vq, an exhaustive search of possi-
ble one-to-one correspondences to v ∈ Cand(u) is required. Therefore, the total search

space of the naive algorithm is
∏N

i=1 Cand(ui), where N = |Vq|. The worst-case time

complexity of the algorithm is O(MN ), where M = |VG| and N = |Vq|. This is a con-
sequence of subgraph isomorphism that is known to be NP-complete. In practice, the

running time depends tightly on the size of the search space,
∏N

i=1 |Cand(ui)|.

3.1. Ullman Algorithm

Ullman algorithm [Ullmann 1976] is the earliest and highly-cited approach to the sub-
graph isomorphism problem. Given a query graph q and a data graph G. To check if
q is subgraph of G, Ullman’s basic approach is to enumerate all possible mappings
of vertices in Vq to those in VG using a depth-first tree-search algorithm. In order to
cope with subgraph isomorphism problem efficiently, Ullman proposed a refinement
procedure to prune the search space. It is based on the following three conditions:

(1) Label and degree condition. A vertex u ∈ Vq can be mapped to v ∈ VG under
injective mapping f , i.e v = f(u), if
(i) lq(u) = lG(v), and
(ii) degq(u) ≤ degG(v).

(2) One-to-One mapping of vertices condition. Once a vertex u ∈ Vq is mapped to
v ∈ VG, we cannot map any other vertex in Vq to the vertex v.

(3) Neighbor condition. By this condition Ullman algorithm examines the feasibil-
ity of mapping u ∈ Vq to v ∈ VG by considering the preservation of structural
connectivity. If there exist edges connecting u with previously explored vertices of
q but there are no counterpart edges in G, the mapping test simply fails.

Applying the above three conditions, |Cand(u)| for each u ∈ Vq could be decreased;
thus cutting down the search space.

3.2. QuickSI Algorithm

QuickSI [Shang et al. 2008] is a recent subgraph checking algorithm. It is based
on Ullman, and improve upon it by speeding up Ullman’s search. The underlying
observation behind developing QuickSI algorithm is noting that the Ullman’s search
is random. Ullman usually matches query vertices in the input order. Some orderings
do not preserve connectivity between consecutive query vertices, which requires
Ullman to consume a lot of time checking the feasibility of partial mappings. Instead
of trivially enumerating mappings according to the given order of Vq, QuickSI enu-
merates mappings from a spanning tree of Vq to VG to reduce the combinations by the
connectivity restriction.

QuickSI proposes to follow a search order given by the QI-Sequence. QI-Sequence
is a sequence that represents a rooted spanning tree, tq, for q and consists of a list of
spanning entries, Ti , for 1 ≤ i ≤ |Vq|, where each Ti keeps the basic information of
the spanning tree of q. In QI-Sequence, a Ti may be followed by a list of extra entries,
Rij , which keeps the extra topology information related to the corresponding spanning
entry. To identify a subgraph isomorphic mapping from q to G, QuickSI iteratively
grows each possible mapping on tq in a depth-first manner according to the vertices
order in QI-Sequence. QuickSI can terminate earlier if a prefix of QI-Sequence cannot
be sub-isomorphically mapped to G. To effectively reduce the search costs, the authors
propose to reorder the QI-Sequence as follows. Pick up the vertex v from q, such that its
label has the lowest occurrence in the graph G, as the the first entry in QI-Sequence.
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Then, iteratively pick up an unchosen vertex such that the spanning edge has the
lowest occurrence in the graph G among all valid options.

3.3. Vflib Algorithm

The Vflib algorithm [Cordella et al. 2004] is another important algorithm for subgraph
isomorphism problem. It uses a different strategy from Ullman algorithm. Vflib pro-
ceeds by creating and modifying a match state. The match state contains a matched-
set, which is a set of vertex pairs that match between the query graph q and data graph
G. If the matched-set contains all of the query graph q, then the algorithm is success-
ful and returns. Otherwise, the algorithm attempts to add a new pair. It does this by
tracking the set of vertices immediately adjacent to the matched-set. This set defines
the potential vertices that can be added to a given state. The only pairs that can be
added are either in the adjacent sets of both graphs. The algorithm uses backtracking
search to find either a successful match state, or return a failure.

4. NEW SUBGRAPH ISOMORPHISM ALGORITHMS

Clearly, the subgraph isomorphism checking is very costly, and it becomes even chal-
lenging when the graph and the query are large and dense. In order to alleviate the
time consuming search considered by previous algorithms, we consider reducing the

search space size
∏N

i=1 |Cand(ui)| in the following two aspects:

— Minimize |Cand(u)| for each vertex u ∈ Vq.
— Minimize the number of one-to-one correspondence checking, i.e., minimize N .

In this paper, we propose two new algorithms for subgraph isomorphism checking.
These algorithms are based on Ullman algorithm and improve upon it by reducing
its search space. The first algorithm reduces the search space size by utilizing the
label information of vertex’s neighborhood, and speeding up the search by following
a novel ordering strategy of the query’s vertices. The algorithm is called Fast-ON
(which stands for the bold letters in: Fast subgraph testing by Ordering the query’s
vertices and utilizing labeled Neighborhood information). Comparing to the well-
known algorithms Ullman [Ullmann 1976] and Vflib [Cordella et al. 2004], Fast-ON
achieves up to 1-3 orders of magnitude speed-up. Fast-ON algorithm is published in
[Gouda and Hassaan 2012].

The second algorithm explores the possibility of leveraging substructural matching
instead of vertex matching to minimize N . In fact, substructure matching will cut
down the depth of the search tree, and consequently the search size as the matching
candidates will also be minimized. This new algorithm follows a path-at-a-time match-
ing manner, and called Fast-P which stands for the bold letters in: Fast Path-at-a-time
manner. To speed up the search in Fast-P, we propose an ordering of the query paths to
force false mappings to be discarded as early as possible during the search. In Section
4.2, Fast-P algorithm is discussed in details. Next, we introduce Fast-ON algorithm.

4.1. Fast-ON Algorithm

The search space considered by Ullman algorithm is still huge even after using the
refinement procedure. Fast-ON explores much smaller space than that of Ullman algo-
rithm by utilizing vertex neighborhood as in the following optimization.

4.1.1. Opt1: Utilizing Neighborhood Labels. Here, we introduce a condition effective in re-
ducing the search space. It is based on the neighborhood labels of matching vertices.
This new condition is much stronger than the label and degree condition of the refine-
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ment procedure in Ullman algorithm. First, we define the labeled neighborhood of any
vertex as follows.

Definition 4.1. Vertex Labeled Neighborhood. Given a graph G and a vertex
u ∈ VG, the labeled neighborhood of u is given as NLG(u) = {(lG(v), lG((u, v))) : v ∈ VG

and (u, v) ∈ EG}. �

The following theorem presents the necessary condition required to map a vertex
u ∈ Vq to a vertex v ∈ VG.

THEOREM 4.2. Given two graphs q and G such that q is subgraph isomorphic G
under injective function f. If u ∈ Vq is mapped to v ∈ VG, then NLq(u) ⊆ NLG(v). �

Thus, according to Theorem 4.2, if the labeled neighborhood of a vertex v ∈ VG does
not contain the labeled neighborhood of a vertex u ∈ Vq, u can not be mapped to v. We
can reduce the search space by enforcing this inclusion test. Next condition generalizes
the first condition of the refinement procedure in Ullman algorithm by adding this
inclusion test.

(1) Label and neighborhood inclusion condition. A vertex u ∈ Vq can be mapped
to v ∈ VG under injective function f , i.e v = f(u), if
(i) lq(u) = lG(v), and
(ii) NLq(u) ⊆ NLG(v).

Note that if NLq(u) ⊆ NLG(v) is satisfied, it directly leads to deg(u) ≤ deg(v) since
deg(v) = |NLG(v)| for simple graphs.

EXAMPLE 2. Consider the two graphs q and G given in Figure 2. According to the
label and neighborhood inclusion condition, we can map vertex u1 ∈ Vq to v1 ∈ VG since
(i) lq(u1) = lG(v1) = A, and (ii) NLq(u1) = {(B, Y ), (B, Y )} ⊆ {(A,X), (B, Y ), (B, Y )} =
NLG(v1). �

Though the label and neighborhood inclusion condition is effective in reducing the
search space, applying the inclusion test is expensive especially for large size graphs
with higher average vertex degree. Below, we propose a new method to efficiently apply
the inclusion test. The method is based on the observation that many vertices in the
query or data graph share the same neighborhood. The next example highlights this
fact.

EXAMPLE 3. Consider the query graph q and data graph G given in Figure 2. We
have (1) In graph G: NLG(v1) = NLG(v2) = {(A,X), (B, Y ), (B, Y )}, NLG(v3) = NLG(v5)
= {(A, Y ), (B,Z)}, and NLG(v4) = {(A, Y ), (A, Y ), (B,Z), (B,Z)}; (2) In query graph q:
NLq(u1) = {(B, Y ), (B, Y )}, and NLq(u2) = NLq(u3) = {(A, Y ), (B,Z)}. �

Based on the above observation, we can reduce the cost of the containment checks
by caching most of the repeated computations, as in the following steps:

(1) Find the set of distinct labeled neighborhoods for the two graphs q and G, denoted
as DLNG and DLNq, respectively.

(2) Construct a bit matrix MDLN = (mij)αβ where α = |DLNq| and β = |DLNG|, to
maintain the inclusion relationship between distinct neighborhoods of q and G,
that is, mij = 1 if DLNq[i] ⊆ DLNG[j], otherwise mij = 0.

(3) For a graph g, where g is q or G, construct an array of pointers Pg of size |Vg|,
called position array, where each slot u holds the index of the vertex u labeled
neighborhood at DLNg.
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Now we can say that, for each u ∈ Vq and v ∈ VG, we have NLq(u) ⊆ NLG(v) iff
mPq(u)PG(v) = 1. Thus, the test (ii) in label and neighborhood inclusion condition can

be replaced by testing if mPq(u)PG(v) = 1.

In subgraph search problem, for example, caching the repeated computations as
above is very useful since real graph data tend to share commonality, that is, a ver-
tex may appear in many data graphs. This happens because the real data come from
the same application domain. Note that in the experiments, subgraph search problem
is used for testing Fast-ON algorithm.

Algorithm: Order V ertices(Vq)

Input: Vq = {u1, u2, . . . , u|Vq|};
Output: An order of Vq , V ′

q = {u′
1, u

′
2, . . . , u

′
|Vq|

};

1: V ′
q = φ;

2: for each u ∈ Vq do calculate deg(u);
3: u′

1 = uk, k = argmaxu∈Vq
deg(u);

4: Add u′
1 to V ′

q and remove uk from Vq;
5: for i = 2 . . . |Vq|
6: u′

i = uk, k = argmaxu∈Vq
|{(u, u′) ∈ Eq : u′ ∈ V ′

q}|;
7: Add u′

i to V ′
q and remove uk from Vq;

8: return V ′
q ;

Fig. 5. Ordering Query Vertices Algorithm

To speed up the search in Fast-ON, we propose and ordering methodology of the
query vertices as we show in the the following optimization.

4.1.2. Opt2: Ordering the query vertices. This optimization is based on the observation
that the search order in Ullman algorithm is random. It depends on the order of query
vertices imposed during input. This default ordering of Vq can possibly result in a
search order that seriously slows down Ullman Algorithm. Query vertices should be
explored in the order that facilitates getting the utmost benefit of applying the third
condition. Unlike the QuickSI algorithm, our approach to order Vq is to require the cur-
rently processing query vertex to have high connectivity with the previously explored
ones, that is, suppose that ui ∈ Vq is the currently processing vertex, then ui should
have the higher connectivity with u1, u2, . . . , ui−1 among the remaining ones. Whereas,
the first vertex to explore, i.e., u1, is the one with maximum degree. This new ordering
forces false mapping to be discarded as early as possible during the search, thus sav-
ing much of the time that Ullman algorithm may take on false long partial mappings.
Figure 5 outlines this idea.

4.1.3. Fast-ON Pseudocode. Figure 6 outlines Fast-ON algorithm. Line 1 applies the
second optimization Opt2, whereas lines 2-5 outline the first optimization Opt1. In
line 5, for each query vertex u ∈ Vq , data graph vertices v ∈ VG that satisfy the
modified first condition are collected into a set called candidate set Cand(u). The pro-
cedure Recursive Search matches ui over Cand(ui) (line 5) and proceeds step-by-step
by recursively matching the subsequent vertex ui+1 over Cand(ui+1) (lines 6-7), or
sets the Test variable to true value and returns if every vertex of q has counterpart
in G (line 9). If ui exhausts all vertices in Cand(ui) and still cannot find matching,
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Algorithm: Fast-ON (q,G)

Input: q: a query graph and G: a data graph.
Output: Boolean: q is a subgraph of G.

Boolean Test = FALSE; /* Global Variable */

1: V ′
q = Order V ertices(Vq); /* Opt2 */

2: Construct DLNG, DLNq and MDLN ;
3: Construct both Pq and PG;
4: for each u ∈ V ′

q do
5: Cand(u) = {v : v ∈ VG, lq(u) = lG(v), and mPq(u)PG(v) = 1}; /* Opt1 */
6: Recursive Search(u1);
7: return Test;

Procedure Recursive Search(ui)
1: if NOT Test then
2: for v ∈ Cand(ui) and v is unmatched do /* Cond. 2 (Ullman)*/
3: if NOT Matchable(ui, v) then continue;
4: f(ui) = v; v = matched;
5: if i < |V ′

q | then
6: Recursive Search(ui+1);
7: else
8: Test = TRUE;
9: return;
10: f(ui) = NULL; v = unmatched; /* Backtrack */

Function Matchable(ui, v) /* Cond. 3 (Ullman)*/
1: for each (ui, uj) ∈ Eq, j < i do
2: if (v, f(uj)) /∈ EG then return FALSE;
3: return TRUE;

Fig. 6. Fast-ON Algorithm

Recursive Search backtracks to the previous state for further exploration (line 11).
The procedure Matchable applies the third condition.

Note that according to Opt1, for each u, Cand(u) is as small as possible. Conse-
quently Fast-ON explores much smaller space than Ullman algorithm. Moreover,
according to Opt2, false mappings are discarded as early as possible, saving much of
the computations spent by Ullman algorithm.

4.2. Fast-P Algorithm

The vertex-to-vertex matching used in Ullman and Fast-ON is time consuming spe-
cially when N = |Vq | is large. Recall that N represents the depth of the search tree. In
this section, we propose a new algorithm for subgraph isomorphism problem that uses
substructure correspondences instead of vertex correspondences to reduce the depth
of the search tree. Intuitively, if we index a set of substructures of the data graph G,
S = {s1, s2, . . .}, such that si ⊂ G, and answer subgraph isomorphism in a structure-
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at-a-time manner by checking one-to-one correspondence on query’s substructures in-
stead of query’s vertices, we definitely reduce the depth of the search space. In other
words, we can minimize the depth of the the search tree of Ullman algorithm by match-
ing a substructure per iteration. Applying this idea, two challenges will arise which are
as follows.

— The First Challenge. Which kind of substructures will efficiently work?
— The Second Challenge. How these substructures are extracted and used?

Regarding the first challenge, there are three kinds of substructures that can be
indexed, that are paths, trees, and graphs. We use paths for the following reasons:

(1) Enumerating paths in a given graph G is simple and easy while enumerating gen-
eral subgraphs or simply trees is quite expensive.

(2) Manipulating paths is much easier than that for general subgraphs. For instance,
the number of redundancies of every path’s embedding is at most two, while it
could be much larger than two for general subgraphs, which adds extra overhead
for the case of general subgraphs. The main cause of redundancy will be discussed
in more details below.

The new algorithm, called Fast-P (Fast Path-at-a-time manner algorithm), explores
a tree-structured search space considering all possible path-to-path mappings from q
to G. Each path corresponding to a query path is, in fact, a local match to its cor-
responding query path. If the query is subgraph isomorphic to the data graph, then
some of these local matches could be combined together to produce a global match to
the query. In what follows, we show how paths are extracted and efficiently used in
Fast-P (the second challenge).

4.2.1. Path Enumeration and Encoding in Fast-P. Since the strategy of Fast-P is based on
path-to-path matching, we first enumerate and index simple paths in the data graph
G. Usually, the number of paths in G is large. Thus, we will use a path’s size parameter,
called maxL, to control the number of indexed paths in G. We use PG to denote the set
of simple paths of size up to maxL in a graph G. To deal with the issue of redundancy
while path enumeration, we introduce the following concepts.

Definition 4.3. Reversed Path. Given a path p = v1  vk in a graph G, its reversed
path is a path vk  v1 and denoted by pr. �

Definition 4.4. (Non-)Iso Path. A path v1  vk in a graph G is called an iso path
if l(vi) = l(vk−i+1) and l((vi, vi+1)) = l((vk−i, vk−i+1)) ∀ i = 1, 2, . . . , k/2, otherwise it is
called a non-iso path. �

EXAMPLE 4. The path p1 = (v1, v2, v3) in Figure 7 is called iso path since l(v1) =
l(v3) = B and l((v1, v2)) = l((v2, v3)) = Z, while the path p2 is called non-iso path since
l(v1) = A 6= B = l(v3). Finally, pr1 = (v3, v2, v1). �

LEMMA 4.5. Every embedding of an iso path p has two redundancies, p and pr.

EXAMPLE 5. Given the two paths p1 and p2, the tree T1, and the two graph G1 and
G in Figure 7. The iso path p1 has two redundant embeddings in G, that are, {v3, v4, v5}
and {v5, v4, v3} while the non-iso path p2 has only one redundant embedding, that is,
{v2, v1, v4}. The tree T1 and subgraph G1 have four redundant embeddings in G, which
are {v1, v2, v3, v4, v5}, {v2, v1, v3, v4, v5}, {v1, v2, v5, v4, v3}, and {v2, v1, v5, v4, v3}. �

Storing and comparing paths would require a good representation of path embed-
dings. To do so, consider the following concepts.
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Fig. 7. Duplicated Embedding

Definition 4.6. Canonical Path. The code of a path p = v1  vk, de-
noted as code(p), is a sequence of vertex and edge labels in the following order:
”l(v1)l((v1, v2))l(v2) . . . l(vk−1)l((vk−1, vk))l(vk)”. The path p is called canonical, denoted
pc, if its code is the lexicographically minimum of code(p) and code(pr). �

COROLLARY 4.7. Every iso path p is canonical.

PROOF: This is because code(p) = code(pr). �

EXAMPLE 6. Consider the two paths p1 and p2 in Figure 7, we have p1 is canon-
ical since it is iso path, and the path p2 is canonical since code(p2) = ”AXAY B” ≤
”BY AXA” = code(pc2). �

4.2.2. Path Matching in Fast-P. Usually, the number of paths in a query that are candi-
dates for matching is much larger than the number of vertices, i.e., |Pq| ≫ |Vq|. Thus,
for Fast-P to be effective, the number of query’s paths used for matching should be less
than the number of query’s vertices. Considering disjoint paths of size up to maxL, de-
noted as DPmaxL(q), which cover the query, is a key step toward reaching this objective.
Disjoint paths are defined as follows.

Definition 4.8. Disjoint Paths. Distinct paths in a graph q are called disjoint if
they are edge disjoint, but not necessarily node disjoint. �

EXAMPLE 7. Suppose that the graph G in Figure 7 is our query

q, and set maxL = 2. There are 21 paths in Pq given as: Pq = {
{1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 4, 2}, {1, 4, 3}, {1, 4, 5}, {2, 1, 3}, {2, 1, 4}, {2, 4, 3}, {2, 4, 5},

{2, 5, 4}, {3, 1, 4}, {3, 4, 5}, {4, 2, 5}, {1, 2}, {1, 3}, {1, 4}, {2, 4}, {2, 5}, {3, 4}, {4, 5}}.
The following paths are disjoint paths covering q, DP2(q) =

{{5, 2, 4}, {2, 1, 4}, {3, 4, 5}, {1, 3}}. Compare |DP2(q)| = 4 with |Vq| = 7, we can
save three call with Fast-P. �

Thus, the total search space of Fast-P is given by the product
∏|DPmaxL(q)|

i=1 Cand(pi),

where Cand(pi) = {p′ ∈ PG : code(p′
c

) = code(pci )} is the set of graph paths that
match a query path pi . To optimize Fast-P, query paths should be chosen such that
|DPmaxL(q)| and |Cand(pi)| are minimized. The first optimization we introduce, called
Opt1, minimizes |DPmaxL(q)|. Another optimization called Opt2 is used to minimize
the set of matching candidates |Cand(pi)| for each query path pi. Finally, to speed
up the search in Fast-P, we propose an ordering of the query paths to force false
mappings to be discarded as early as possible during the search. This ordering is
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presented in the third optimization, called Opt3.

Algorithm: Cover (q, Pq)

Input: Pq: q’s simple paths of size up to maxL-edges;
Output: DPmaxL(q): disjoint paths covering q, initialized empty;

1: Sort Pq in decreasing order based on path size;
2: DPmaxL(q) = {};
3: q′ = q;
4: for each p ∈ Pq do
5: if p ⊆ q′ and q′ \ p is connected then
6: Remove p from q′;
7: DPmaxL(q) = DPmaxL(q) ∪ {p};
8: if q′ is empty graph then
9: break;
10: return DPmaxL(q);

Fig. 8. An Algorithm to Find a Cover of q

4.2.3. Opt1: Minimizing |DPmaxL(q)|. For a given query graph, there are multiple dis-
joint path decompositions. Some are compact and the others are not. The algorithm
in Figure 8 finds a compact set of disjoint paths that cover q. The algorithm works as
follows. Given the set of all limited-size, simple paths Pq generated from the query q.
Pq is processed in descending order of path size. For each encountered path p ∈ Pq,
we check if removing p from the query disconnects it or not. If so, i.e., the resulting
graph is disconnected, p is not considered and the search continue for another one. If,
on the other hand, the resulting graph still connected, p is selected to be in the cover
and removed from the query. Theorem 4.9 shows that the selected paths DP (q) are
disjoint, and if maxL = 2, then DP (q) is compact.

THEOREM 4.9. Given Pq, the set of q simple paths of size up to maxL-edges. The set
DPmaxL(q) returned by the algorithm in Figure 8 is the set of disjoint paths covering q.
If maxL = 2, then DPmaxL(q) is compact.

PROOF: A path of the largest length p ∈ Pq is inserted into DPmaxL(q) (line 7) and
removed from q′ (line 6) if it fully exists in q′, i.e., if p ⊆ q′ (line 5). This guarantees
that all chosen paths do not share any edge, i.e., they are disjoint.

Suppose that DPmaxL(q) is not compact and maxL = 2. Then, there exist at least
two 1-edge paths p1 and p2 in DPmaxL(q) such that the path p = p1 ∪ p2 is not chosen
by the algorithm. Since p1 ⊆ q′ and p2 ⊆ q′, then the only reason to not choose p is that
p disconnects q′. On the other hand, since removing p1 or p2 leaves q′ connected, then
removing p also leaves q′ connected, i.e., p should have been chosen, a contradiction. �

According to Theorem 4.9, if we set maxL = 2, then DPmaxL(q) is compact and we
have two cases with respect to the number of edges in q as follows.

— If |Eq| is even then DPmaxL(q) contains ⌊|Eq|/2⌋ paths of size 2 (i.e. |DPmaxL(q)| =
⌊|Eq|/2⌋).
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— If |Eq| is odd then DPmaxL(q) contains ⌊|Eq|/2⌋ paths of size 2 and one path of size 1
(i.e. |DPmaxL(q)| = ⌊|Eq|/2⌋+ 1).

EXAMPLE 8. Consider the query q in Figure ?? and set maxL = 2. Since |Eq| = 7 is
odd then |DP2(q)| = ⌊7/2⌋+ 1 = 4. The following disjoint paths are generated using the
algorithm in Figure 8: DP2(q) = {{3, 1, 2}, {1, 4, 2},
{5, 2, 3}, {4, 5}}. The size of DP2(q) is optimal. �

Unfortunately, there is a tradeoff between the number of calls (depth of the search
space) in Fast-P and the maxL used. For instance, suppose the query q is a complete
graph such that |Vq| = 7 then q has |Eq| = (|Vq |.(|Vq| − 1))/2 = 21 edges. Choosing
maxL = 1, Algorithm Cover will produce |DP1(q)| = 21 disjoint paths, i.e., the number
of edges in q. Setting maxL = 2, we still have 11 disjoint paths that cover q. Comparing
with |Vq | = 7, substructure matching of paths of size 2 is not effective in this case.

To guarantees a higher efficiency than that of vertex-at-a-time approaches, maxL
must be chosen according to the following equation.

|Eq|/|Vq| < maxL (1)

To set equation 1 in terms of graph density, where the density of query q is defined
as dq = 2.|Eq|/(|Vq|.(|Vq | − 1)). Then equation 1 will be given as:

dq < 2.maxL/(|Vq| − 1) (2)

This equation shows the role that query density plays in the performance of Fast-P.
Dense queries require higher maxL. Fortunately, the real data and the queries are
always sparse graphs.

EXAMPLE 9. Consider the query q in Figure 2. Since |Vq| = 3 and |Eq| = 3, setting
maxL = 2 will make Fast-P faster than Fast-ON. �

4.2.4. Opt2: Minimizing |Cand(pi)|. For each query path p, Cand(p) is guaranteed to
be smaller than

∏
vi∈p Cand(vi). This is because vertex connections are already

considered in the paths. For instance, consider a query path p = (v1, v2, v3), and
given Cand(v1), Cand(v2), and Cand(v3). There are Cand(v1) × Cand(v2) × Cand(v3)
combinations to be considered in any vertex-to-vertex manner algorithm. On the
other hand, the number |Cand(p)| is much smaller than the previous product, since
all paths connecting the vertices in Cand(v1), Cand(v2), and Cand(v2) are the only
considered ones. Hereafter, we optimize Cand(p), i.e., reduce the candidate set of each
path p ∈ DPmaxL(q) more than ever, by utilizing the neighborhood labels of all vertices
in p.

The next theorem presents the necessary condition required by any data graph path
p′ ∈ Cand(p) to share in any subgraph isomorphism between q and the data graph G.

THEOREM 4.10. If the query graph q is subgraph isomorphic to the data graph G,
then for any p′ ∈ Cand(p) sharing in the isomorphism, pc = (u1, . . . , uk) and p′

c

=
(v1, . . . , vk) must satisfy

(1) NLq(ui) ⊆ NLG(vi) ∀ i = 1, . . . , k, or
(2) NLq(ui) ⊆ NLG(vk−i+1) ∀ i = 1, . . . , k. �

The previous theorem presents the necessary condition required for a data graph
path p′ to be included in Cand(p), p ∈ DPmaxL(q). Applying this condition while con-
structing Cand(p) would minimize Cand(p) and cut down the search space of Fast-P.
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COROLLARY 4.11. In the case of non-iso path p, the first test is sufficient. �

To efficiently apply the inclusion tests in Fast-P algorithm, we construct a bit matrix
similar to that is used with Fast-ON, MDLN = (mij)αβ (where α = |DLNq| and β =
|DLNG|) and the same two pointers Pq and PG as in the Fast-ON algorithm. The two
tests in Theorem 4.10 are replaced by the following two tests:

(1) mPq(ui)PG(vi) = 1 ∀ i = 1, . . . , k, or

(2) mPq(ui)PG(vk−i+1) = 1 ∀ i = 1, . . . , k.

4.2.5. Opt3: Ordering DPmaxL(q). Although Cand(pi) is minimized for each
pi ∈ DPmaxL(q) based on Opt2, the search order of the paths in DPmaxL(q) is
random, and can seriously slow down the algorithm. Query disjoint paths DPmaxL(q)
should be explored in the order that excludes false local matches of each path
pi ∈ DPmaxL(q) as early as possible, saving much of the time that may be taken on
false long partial mappings. A local match of path pi is false if it does not satisfy the
preservation of structural connectivity. When we maximize the node overlapping of a
currently processing query disjoint path pi ∈ DPmaxL(q) with the previously explored
ones (p1, ..., pi−1), we, in fact, maximize the connectivity among pi and the previously
explored ones (p1, ..., pi−1), and thus increase the likelihood that false local matches are
detected early. Thus, we adopt an ordering of DPmaxL(q) = {p1, p2, . . . , p|DPmaxL(q)|},
such that the node overlapping of Vpi

is maximized with ∪j<iVpj
. And, the first path

p1 is chosen such that
∑

u∈Vp1
freq(u) is maximum, where freq(u) is the frequency of

the node u with respect to DPmaxL(q). Figure 9 outlines the idea.

Algorithm: Order(Vq, DPmaxL(q))

Input: DPmaxL(q) = {p1, p2, . . . , p|DPmaxL(q)|};
Output: An order of DPmaxL(q) = {p′1, p

′
2, . . . , p

′
|DPmaxL(q)|};

1: for each u ∈ Vq do calculate freq(u);
2: p′1 = pk, k = argmaxp∈DPmaxL(q)

∑
u∈Vp

freq(u);

3: DPmaxL(q) = DPmaxL(q) \ {p
′
1};

4: newDPmaxL(q) = {p′1};
5: V = Vp′

1
;

6: for i = 2 . . . (|DPmaxL(q)| − 1) do
7: p′i = pk, k = argmaxp∈DPmaxL(q)|Vp ∩ V |;
8: DPmaxL(q) = DPmaxL(q) \ {p

′
i};

9: newDPmaxL(q) = newDPmaxL(q) ∪ {p′i};
10: V = V ∪ Vp′

i
;

11: return newDPmaxL(q);

Fig. 9. Algorithm for Ordering DPmaxL(q)

4.2.6. Fast-P Pseudocode. The pseudocode of Fast-P is similar to that of Fast-ON
algorithm, except that paths are used instead of vertices. Figures 10 and 11 outline
the pseudocode of Fast-P algorithm. The main difference between Fast-P and Fast-P
codes is that a query vertex has only one image at a time in Fast-ON. But it could
have more than one image in Fast-P. This is because the query vertex could appear in
many query disjoint paths, and thus it has different images in the different candidate
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Algorithm: Fast-P(q, G)

Input: q: a query graph and G: a data graph.
Output: Boolean: q is a subgraph of G.

Boolean Test = FALSE; /* Global Variable */

1: for each u ∈ Vq do
2: u.Count = 0
3: h[u] = NULL
4: for each v ∈ VG do
5: v.Count′ = 0
6: Pq = {p ⊆ q : p is a simple path ∧ |p| ≤ maxL};
7: PG = {p′ ⊆ G : p′ is a simple path ∧ |p′| ≤ maxL};
8: DPmaxL(q) = Cover(q,Pq); /* Opt1 */
9: DP ∗

maxL(q) = Order(Vq , DPmaxL(q)); /* Opt3 */
10: Construct DLNG, DLNq and MDLN ;
11: Construct both Pq and PG;
12: for each p ∈ DP ∗

maxL(q) do
13: if p is iso labeled path
14: Cand(p) = {p′ ∪ p′r : p′ ∈ PG, p

′ satisfies Theorem 4.10 } /* Opt2 */
15: else
16: Cand(p) = {p′ : p′ ∈ PG, p

′ satisfies Theorem 4.10 } /* Opt2 */
17: f(p) = NULL
18: Recursive Search(p1); /* p1 is the first path in DP ∗

maxL(q) */
19: return Test;

Fig. 10. Fast-P Algorithm

paths of the data graph. To overcome this in Fast-P, we combine candidate paths
only if these paths have the same images of a given vertex. To implement this, two
counters are used in Fast-P, one for each vertex u ∈ Vq denoted by u.Count and the
other for each vertex v ∈ VG, denoted by v.Count′. If u ∈ Vq is mapped to vertex v ∈ VG,
denoted as h[u] = v, then we increment u.Count and v.Count′ (Lines 5-7 in func-
tion Matchable [Figure 11]) by one and in the backtracking step, we decrement one
from u.Count and v.Count′ (Lines 11-13 in Recursive Search(pi) algorithm [Figure 11]).

Regarding Figure 10, Lines 1-5 initialize for each vertex query and graph vertex its
counter, and initialize for each vertex u ∈ Vq its mapping by 0 (h[u] = 0). Lines 6-7
enumerate all simple paths of size up to maxL in q and G respectively. Line 8 applies
the first optimization (Opt1), whereas line 9 outlines the second optimization (Opt2).
Lines 10-16 apply the third optimization (Opt3). Line 17 initializes the mapping (f )
that maps each path in DP ∗

maxL(q) to NULL.

The procedure Recursive Search (Figure 11) matches a previously unmatched pi ∈
DP ∗

maxL(q) over Cand(pi), and proceeds step-by-step by recursively matching the sub-
sequent path pi+1 over Cand(pi+1) (lines 6-7), or sets Test to true value (line 8) and
returns if every path pi ∈ DP ∗

maxL(q) has counterpart in PG (line 9). If pi exhausts all
paths in Cand(pi) and still cannot find matching, Recursive Search backtracks to the
previous state for further exploration (lines 10-13). In function Matchable (Figure11),
pi ∈ DP ∗

maxL(q) is not mapped to p′ in Cand(pi), if for each j such that 1 ≤ j ≤ |Vpi
|,
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Algorithm: Recursive Search(pi)

1: if NOT Test then
2: for p′ ∈ Cand(pi) and p′ is unmatched do
3: if NOT Matchable(pi, p

′) then continue;
4: f(pi) = p′; p′ = matched;
5: if i < |DP ∗

maxL(q)| then
6: Recursive Search(pi+1);
7: else
8: Test = TRUE;
9: return;
10: f(pi) = NULL; p′ = unmatched; /* Backtrack */
11: for j = 1 to |Vpi

| do
12: Set u as j-th vertex in pi

c and v as j-th vertex in p′
c

13: u.Count = u.Count− 1, v.Count′ = v.Count′ − 1, and h[u] = NULL;

Function Matchable(pi, p
′)

1: for j = 1 to |Vpi
| do

2: Set u as j-th vertex in pi
c and v as j-th vertex in p′

c

3: if ((u.Count 6= 0 || v.Count′ 6= 0) ∧ h[u] 6= v)
4: return FALSE;
5: for j = 1 to |Vpi

| do
6: Set u as j-th vertex in pi

c and v as j-th vertex in p′
c

7: u.Count = u.Count+ 1, v.Count′ = v.Count′ + 1, and h[u] = v
8: return TRUE;

Fig. 11. Fast-P Algorithm (Continued)

the mapping h[u] = v (where u is j-th vertex in pi
c and v is j-th vertex in p′

c
) is not

satisfied. In this case the function Matchable return FALSE, otherwise the function
Matchable return TRUE.

5. EXPERIMENTAL EVALUATION

The experimental evaluation of the two algorithms, Fast-ON and Fast-P, are made
using PC with Intel 3GHz dual Core CPU and 4G main memory and running Linux.
The algorithms were implemented in standard C++ with STL library support and
compiled with GNU GCC. To make the time measurements more reliable, no other ap-
plications were running on the machine while doing the experiments. In experiments,
we consider vertex/edge labeled graphs and vertex labeled graphs.

The rest of this chapter is organized as follows. In Section 5.1, we present the
datasets that are used in our evaluation. Effects of optimization methods are pre-
sented in Section 5.2.1. Finally, in the reminding sections, we present experimental
results of the two algorithm (Fast-ON and Fast-P).

5.1. Datasets

5.1.1. Real Dataset. AIDS 10K. The first real dataset, referred to as AIDS 10k,
consists of 10,000 graphs that are randomly drawn from the AIDS Antiviral screen
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database 1. These graphs have 25 vertices and 27 edges on average. There are totally
62 distinct vertex labels in the dataset but the majority of these labels are C, O and N.
The total number of distinct edge labels is 3.

Chem 1M. In order to study the scalability of Fast-ON and Fast-P against different
dataset size, we use a large real chemical compound dataset, referred to as Chem 1M.
Chem 1M is a subset of the PubChem database (ftp://ftp.ncbi.nlm.nih.gov/pubchem/),
and consists of one million graphs. Chem 1M has 23.98 vertices and 25.76 edges
on average. The number of distinct vertex and distinct edge labels are 81 and 3,
respectively. For this study, we derive subsets from Chem 1M, each one consists of N
graphs and called Chem N dataset. Note that the Chem 1M is the same as that used
in [Han et al. 2010].

5.1.2. Synthetic Datasets. The synthetic datasets are generated using the synthetic
graph data generator GraphGen [Cheng et al. 2007]. The generator allows us to
specify various parameters such as the average graph density D, graph size E
and the number of distinct vertex/edge labels L. For example, Syn10K.E30.D5.L50
means that it contains 10,000 graph; the average size of each graph is 30;
the density of each graph is 0.5; and the number of distinct vertex/edge labels
is 50. Five synthetic datasets with varying parameter values are used in ex-
periments in order to see performance changes with varying parameter values
(Syn10K.E30.D3.L50, Syn10K.E30.D5.L50, Syn10K.E30.D7.L50, Syn10K.E30.D5.L80
and Syn10K.E30.D5.L20). Note that all the previous five synthetic datasets are dense
dataset and are the same as in [Han et al. 2010]. Also, we get another synthetic dataset
from CT-index [Klein et al. 2011]. This dataset is sparse dataset and we denote it by
SynCT 10K.

5.1.3. Query Sets. For each dataset (real or synthetic), there are six query sets Q4,
Q8, Q12, Q16, Q20 and Q24. Each Qi consists of 1000 queries, each of which of
size i. For AIDS 10K, Chem 1M, and the previous five synthetic datasets, we adopt
the query set from [Han et al. 2010]. For SynCT 10K, we adopt the query set from
[Klein et al. 2011].

5.2. Performance of Subgraph Checking Algorithms

5.2.1. Effects of Optimizations. In this section, we show the effect of each optimization
on the performance of Fast-ON and Fast-P algorithms.

— Effects of Optimizations in Fast-ON Algorithm
There are two optimizations, called Opt1 and Opt2, introduced in Fast-ON. In this
experiment, we show the effect of each optimization independently, and the effect of
them combined, on the performance of Fast-ON. For this purpose, we implemented
three versions of Fast-ON, namely, Fast-O that uses only the first optimization Opt1,
Fast-N that uses only the second optimization Opt2, and Fast-ON that uses both of
the two optimizations. Figure 12 plots the results obtained by running the three
versions on AIDS 10K for the different query sets. The figure shows that Fast-N
is faster than Fast-O except for Q12 and Q16, where Fast-O shows the best per-
formance. In addition to its influence on speed, the first optimization makes the
algorithm less sensitive to query size. Fast-ON shows the best performance, it out-
performs both Fast-O and Fast-N. This result confirms the fact that the two opti-
mizations are neither independent nor conflicting, but they are complementary to
each other.

1http://dtp.nci.gov/.
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— Effects of Optimizations in Fast-P Algorithm
In Fast-P Algorithm, there are three optimizations, called Opt1, Opt2, and Opt3.
In this experiment, we show the effect of each optimization independently, and the
effect of them combined, on the performance of Fast-P. To show the effect of the
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Fig. 13. Effects of Optimization in Fast-P Algorithm

first optimization (Opt1), we implemented two versions, namely, Fast-P(1-Edge)
that sets maxL = 1 and Fast-P(2-Edge) that sets maxL = 2. Also, we use Fast-ON
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algorithm and denote it here by Fast-P(Vertex) since in Fast-ON, we apply
vertex-at-a-time-manner rather than path-at-a-time-manner. Figure 13(a) plots the
results obtained by running Fast-P(2-Edge), Fast-P(1-Edge), and Fast-P(Vertex)
on AIDS 10K for the different query sets. This figure shows that Fast-P(1-Edge)
is faster than Fast-P(Vertex) except for Q4, where Fast-P(Vertex) shows the best
performance. Fast-P(2-Edge) shows the best performance, it outperforms both
Fast-P(Vertex) and Fast-P(1-Edge). This result is realistic since Fast-P(2-Edge)
uses large-size local matches. Note that Fast-P(Vertex), Fast-P(1-Edge), and
Fast-P(2-Edge) apply the remaining two optimizations (Opt2 and Opt3). In the
following experiments, we denote Fast-P(2-Edge) by Fast-P.

To show the effect of the remaining two optimizations (Opt2 and Opt3), we imple-
mented two versions, namely, Fast-P(N), that uses the second optimization (Opt2)
only and Fast-P(O), that uses the third optimization (Opt3) only. Note that, we set
maxL = 2 for the two versions (i.e., the two versions apply the first optimization).
Figure 13(b) plots the results obtained by running the two versions on AIDS 10K for
the different query sets. This figure shows that Fast-P(O) is faster than Fast-P(N)
except for Q4 and Q8, where Fast-P(N) shows the best performance. Note that,
the third optimization (Opt3) makes the algorithm (Fast-P(O)) less sensitive to
query size. Fast-P shows the best performance, it outperforms both Fast-P(N) and
Fast-P(O).

The previous results confirm the fact that the three optimizations in Fast-P are
neither independent nor conflicting, but they are complementary to each other.

5.2.2. Fast-ON vs. Fast-P. In this section, we demonstrate the efficiency of our two sub-
graph isomorphism algorithms Fast-ON and Fast-P on sparse datasets (the graphs
have small density) and on dense datasets (the graphs have high density) as follows.

— Performance on Sparse Datasets
In this experiment, we test the performance of Fast-ON and Fast-P on the sparse
datasets AIDS 10K, Chem 200K, and SynCT 10K. Figure 14 reports the results on
these datasets. From this figure, the Fast-P algorithm always spends less response
time compared with Fast-ON algorithm with a factor up to 2. In the following exper-
iments, for sparse datasets, we will use Fast-P.

— Performance on Dense Datasets
In this experiment, we test the performance of Fast-ON, Fast-P(1-Edge), and
Fast-P on the five dense datasets Syn10K.E30.D3.L50, Syn10K.E30.D5.L50,
Syn10K.E30.D7.L50, Syn10K.E30.D5.L80 and Syn10K.E30.D5.L20. Figure 15
reports the results on the five datasets. From this figure, we found that Fast-P
algorithm is the worst one since both Fast-ON and Fast-P(1-Edge) significantly
outperform Fast-P algorithm. Roughly, both Fast-ON and Fast-P(1-Edge) have the
same response time on the five datasets. In the following experiments, we will use
Fast-ON for dense datasets. Note that the performance gain of Fast-ON against
Fast-P dramatically increases when the density increases. This result is occurred
for the following two reasons. The first one is due the cost of inclusion tests in
Fast-P since we can not use the distinct neighborhood strategy with dense datasets.
The second reason is the large number of compatible paths to each query path.

In the next experiments, the two algorithms Fast-ON and Fast-P are tested
against the state-of-the-art subgraph isomorphism algorithms like Ullman (we
implemented it using standard C++ with STL library support), QuickSI (we
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Fig. 14. Performance on Sparse Datasets (Fast-ON vs. Fast-P)

obtained its executable from the authors) and Vflib (we downloaded it from
http://amalfi.dis.unina.it/graph/db/vflib-2.0).

5.2.3. Fast-P vs. Ullman, Vflib, and QuickSI on Sparse Datasets. In this experiment, we
demonstrate the efficiency of our subgraph isomorphism testing algorithm Fast-P
against Ullman and Vflib algorithms on labeled sparse datasets and against Ullman,
Vflib, and QuickSI (works with unlabeled edges datasets only) algorithms on unlabeled
sparse datasets as follows.

— On Labeled Sparse Datasets
Here, we evaluate the performance of Fast-P on AIDS 10K, Chem 10K, and
SynCT 10K datasets by comparing it with the two algorithms Ullman and Vflib.
Total response time for each query set of the three datasets is recorded in Figure
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Fig. 15. Performance on Dense Datasets (Fast-ON vs. Fast-P)
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Fig. 16. Performance of Fast-P on Sparse Unlabeled Datasets

17. For the two datasets Chem 10K and SynCT 10K, Ullman is faster than Vflib
while Vflib outperforms Ullman on AIDS 10K except for Q4. Fast-P shows the best
performance, it outperforms both Ullman and Vflib on the three dataset with a wide
margin.

— On Unlabeled Sparse Datasets
Here, we We used the two sparse datasets AIDS 10K and Chem 10K after remov-
ing the edge labels and we denoted them as Unlabeled AIDS 10K and Unlabeled
Chem 10K. Figure 16 reports the results on the two datasets. From this figure,
QuickSI outperforms Ullman and Vflib on the two datasets. Also, Fast-P shows the
best performance, it outperforms Ullman, Vflib, and QuickSI on AIDS 10K dataset
by more than two order of magnitude, more than one order of magnitude, and three
factors, respectively (Note that Ullman is not shown for the query sets, namely, Q16,
Q20, and Q24 since it failed to run on our machine). On Chem 10K dataset, Fast-P
outperforms Ullman, Vflib, and QuickSI by one order of magnitude, more than two
order of magnitud, and 4 factors, respectively.

5.2.4. Fast-ON vs. Ullman, Vflib, and QuickSI on Dense Datasets. In this experiment, we
demonstrate the efficiency of our subgraph isomorphism testing algorithm Fast-ON
against Ullman and Vflib algorithms on labeled dense datasets and against Ullman,
Vflib, and QuickSI (works with unlabeled edges datasets only) algorithms on unlabeled
dense datasets as follows.

— On Labeled Dense Datasets
In this subsection, we evaluate the performance of Fast-ON on the five
dense datasets Syn10K.E30.D3.L50, Syn10K.E30.D5.L50, Syn10K.E30.D7.L50,
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Fig. 17. Performance of Fast-P on Sparse Labeled Datasets

Syn10K.E30.D5.L80 and Syn10K.E30.D5.L20 by comparing it with the two algo-
rithms Ullman and Vflib. Total response time for each query set of the five datasets
is recorded and demonstrated in the Figure 18. From this figure, Ullman is faster
than Vflib by a large margin and Fast-ON shows the best performance, it outper-
forms Ullman and Vflib on the five labeled dense datasets by up to 3 factors and
more than two order of magnitude, respectively.

— On Unlabeled Dense Datasets
Here, we used the three dense datasets Syn10K.E30.D3.L50, Syn10K.E30.D5.L50,
and Syn10K.E30.D5.L20, after removing the edge labels and we denoted them
as Unlabeled Syn10K.E30.D3.L50, Unlabeled Syn10K.E30.D5.L50 and Unlabeled
Syn10K.E30.D5.L20. Total response time for each query set of the three datasets is
recorded and demonstrated in the Figure 19. From this figure, Ullman outperforms
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Vflib and QuickSI on the three datasets, Vflib is the worst one, and Fast-ON shows
the best performance, it outperforms Ullman, Vflib, and QuickSI on the three un-
labeled dense datasets by up to 3 factors, more than two order of magnitude, and
more than one order of magnitude, respectively.

5.2.5. Scalability. In this experiment, we show the scalability of Ullman, Vflib,
Fast-ON, and Fast-P on labeled sparse datasets and the scalability of Ullman, Vflib,
QuickSI, Fast-ON, and Fast-P on unlabeled sparse datasets as follows.

— On Labeled Sparse Datasets
Figure 20 shows the scalability of Ullman, Vflib, Fast-ON, and Fast-P with respect
to the number of graphs using the labeled sparse dataset Chem 1M and the labeled
query set Q8. The figure shows that the four algorithms scale linearly. However,
Fast-ON outperforms Ullman by factor three, and Vflib by more than one order of
magnitude. Moreover, Vflib is the worst one and it is not shown for 1000K graphs,
since it failed to run on large datasets. The figure also shows that Fast-P has the best
performance, it outperforms Ullman, Vflib, Fast-ON by up to one order of magnitude,
more than two order of magnitude, and up to two factors, respectively.

— On Unlabeled Sparse Datasets
In this subsection, we used the Chem 1M dataset and the query set Q8 after remov-
ing the edge labels and we denoted them as Unlabeled Chem 1M and Unlabeled Q8.
Figure 21 shows the scalability of Ullman, Vflib, QuickSI, Fast-ON, and Fast-P with
respect to the number of graphs using the sparse dataset Unlabeled Chem 1M and
the query set Unlabeled Q8. The figure shows that the five algorithms scale linearly.
However, Fast-ON outperforms Ullman by factor five, Vflib by more than one order
of magnitude, and QuickSI by up to two factors . Moreover, Vflib is the worst one.
Note that Vflib and QuickSI are not shown for 1000K graphs, since they failed to
run on large datasets. The figure also shows that Fast-P has the best performance,
it outperforms Ullman, Vflib, QuickSI, and Fast-ON by up to one order of magnitude,
up to two order of magnitude, up to four factors, and up to two factors, respectively.

6. CONCLUSION

This paper presented two improvements to the Ullmann algorithm, a well-known sub-
graph isomorphism checker, named Fast-on and Fast-p. Fast-on improves Ullman
by reducing its search space using first a refined vertex matching process and second
a new search ordering methodology. Fast-p, on the other hand, is a path-at-a-time
matching, leverages structure instead of vertex matching, and uses efficient path or-
dering methodology to reduce the search space. Experiments show that significant
improvements, up to four orders of magnitude, are achieved.
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